SEMISYNTHETIC β-LACTAM ANTIBIOTICS

II. EFFECT ON ANTIBACTERIAL ACTIVITY OF UREIDO
 N-SUBSTITUENTS IN THE 6-[(R)-2-[3-(3,4-DIHYDROXYBENZOYL)-1-UREIDO]-2PHENYLACETAMIDO]PENICILLANIC ACIDS

Nobuhiro Ohi*, Bunya Aoki, Kanzi Moro, Toshihiko Kuroki, Naoyuki Sugimura, (The late) Takao Noto, Toshiyuki Nehashi, Masahiko Matsumoto, Hiroshi Okazaki and Isao Matsunaga
New Drug Research Laboratories, Chugai Pharmaceutical Co., Ltd., 3-41-8 Takada, Toshima-ku, Tokyo 171, Japan

(Received for publication July 22, 1985)

Abstract

The synthesis and the relationship between in vitro and in vivo activities of $6-[(R)-2-[3-$ (3,4-dihydroxybenzoyl)-3- R_{1}-1-ureido]-2-phenylacetamidolpenicillanic acids having $\mathrm{C}_{2 \sim 8}$ alkyl or substituted alkyl groups as the substituents $\left(\mathrm{R}_{1}\right)$ are described. In this series, $6-[(R)-2-$ [3-(3,4-dihydroxybenzoyl)-3-(3-hydroxypropyl)-1-ureido]-2 - phenylacetamido]penicillanic acid (1b, AO-1100) showed the most potent protective effect on mice in experimental Pseudomonas aeruginosa infections, although it did not have the strongest in vitro activity among the penicillins we synthesized.

In our previous publication, ${ }^{1)}$ we reported that $6-[(R)-2-[3-(3,4$-dihydroxybenzoyl)-3-methyl-1-ureido]-2-phenylacetamido]penicillanic acid (1a), bearing a catechol moiety, showed strong in vitro activities against Gram-negative bacteria including Pseudomonas aeruginosa, but it had weaker in vivo activity than expected from the in vitro activities. Therefore, we continued the study on the relationship between in vitro and in vivo activity of $6-\left[(R)-2-\left[3-\left(3,4\right.\right.\right.$-dihydroxybenzoyl)-3-R $\mathrm{R}_{1}-1$-ureido]-2phenylacetamidolpenicillanic acids bearing $\mathrm{C}_{2 \sim 8}$ alkyl or substituted alkyl groups as the substituents $\left(\mathrm{R}_{1}\right)$ on the urea bond in order to improve the in vivo activity.

This paper describes the synthesis of new penicillins (1) and the results of our structure-activity studies.

Chemistry

As outlined in Scheme 1, the penicillins (1) were prepared by the reaction of silylated ampicillin (ABPC) or amoxicillin (AMPC) with $N-\mathrm{R}_{1}-N$-(3,4-bistrimethylsilyloxybenzoyl)carbamoyl chlorides (4) obtained by chlorocarbonylation of silylated N - $\mathrm{R}_{1}-3,4$-dihydroxybenzamides (3) with trichloromethyl chloroformate (TCF). The benzamides (3) were derived by amidation of 3,4-diacetoxybenzoic acid (2) with various primary amines by the mixed anhydride method followed by deacetylation. In case of preparing the penicillins ($\mathbf{1} \mathbf{b}, \mathbf{1} \mathbf{h}, \mathbf{1} \mathbf{i}, \mathbf{1} \mathbf{j})$ having a hydroxyl group in the substituent $\left(\mathrm{R}_{1}\right)$, the hydroxyl group was protected with trimethylsilyl by the addition of one additional equivalent of trimethylsilyl chloride. 6-[(R)-2-[3-(3,4-Dihydroxybenzoyl)-3-(3-hydroxypropyl)-1-ureido]-2-phenylacetamido]penicillanic acid (1b) was obtained in 89.2% yield by using dichlorodimethylsilane as silylating agent. The yield was about 30% higher than that achieved with trimethylsilyl chloride. This reaction proceeds probably via the cyclic intermediate (5). The selective cleavage of the two acetoxy groups on the

Scheme 1.

1) Silylated $A B P C$ or $A M P C$

4

5

6

R_{1}		R_{1}	
\mathbf{a}	CH_{3}	\mathbf{k}	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{3}$
\mathbf{b}	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$	\mathbf{l}	$\mathrm{CH}_{2} \mathrm{COOC} \mathrm{H}_{2} \mathrm{H}_{5}$
\mathbf{c}	$\mathrm{C}_{2} \mathrm{H}_{5}$	\mathbf{m}	$\mathrm{CH}_{2} \mathrm{CN}$
\mathbf{d}	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	\mathbf{n}	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}$
\mathbf{e}	$n-\mathrm{C}_{4} \mathrm{H}_{9}$		
\mathbf{f}	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	\mathbf{o}	CH_{2}
\mathbf{g}	$n-\mathrm{C}_{8} \mathrm{H}_{17}$		
\mathbf{h}	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$		
\mathbf{i}	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OH}$	\mathbf{p}	CH_{2}
\mathbf{j}	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	\mathbf{q}	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAc}$

TCF: Trichloromethyl chloroformate.

Scheme 2.

benzene ring of N-(3-acetoxypropyl)-3,4-diacetoxybenzamide (6) was carried out by treatment with $28 \% \mathrm{NH}_{4} \mathrm{OH}$ at $-20 \sim-15^{\circ} \mathrm{C}$ to afford N-(3-acetoxypropyl)-3,4-dihydroxybenzamide (3q). 6-[(R)-2-[3-(3,4-Dihydroxybenzoyl)-3-(2-hydroxyethyl)-1-ureido]-2-phenylacetamido]penicillanic acid (1h) was very unstable under basic conditions and trans-acylated easily to 6-[(R)-2-[3-[2-(3,4-dihydroxybenzoyl-oxy)ethyl]-1-ureido]-2-phenylacetamido]penicillanic acid (7) as shown in Scheme 2. The structure of compound (7) was deduced from a similar, previously reported conversion, ${ }^{2)}$ and is supported by IR and NMR spectral data. In order to exclude the possibility of the formation of isomeric compound (8), we synthesized 8 by reaction of silylated ABPC with 2-(3,4-o, o^{\prime}-carbonyldioxybenzamido)ethyloxycarbonyl chloride (9) and demonstrated the spectral properties of 8 to be different from those of 7.

Antimicrobial Activity

Table 1 lists the minimum inhibitory concentrations (MIC) of the penicillins (1) against several bacteria, and the results of their protective effect on mice against P. aeruginosa $\mathrm{J}-272$ infections.

When the substituents $\left(R_{1}\right)$ are alkyl groups $\left(C_{1 \sim 8}\right)$, the length of carbon chains had little effect on in vitro activity against Staphylococcus aureus 209P, Escherichia coli NIHJ and Klebsiella pneumoniae 3 K 25 . However, the longer the carbon chains, the weaker the in vitro activities were against P. aeruginosa. When R_{1} were alkyl groups substituted with a hydroxyl, ethoxycarbonyl or cyano group, the penicillins ($\mathbf{1 b}, \mathbf{1} \mathbf{i}, \mathbf{1}, \mathbf{1 l}, \mathbf{1 m}, \mathbf{1 n}$) were found more active against P. aeruginosa $\mathbf{J}-169$ than the penicillins ($\mathbf{1 k}, \mathbf{1 0}, \mathbf{1} \mathbf{p}$) with a methoxy, phenyl or furfuryl group at R_{1}. The penicillin ($\mathbf{1 h}$) bearing a hydroxyethyl group as the substituent $\left(\mathrm{R}_{1}\right)$ generally showed weak activity against all bacteria tested. This weak activity may be attributed to the conversion of $\mathbf{1 h}$ to 7 . On the other hand, the penicillin (1d) with an n-propyl group showed more potent in vivo activity against P. aeruginosa $\mathrm{J}-272$ infections

Table 1. Antibacterial and therapeutic activities of penicillins (1).

CompoundNo.	R_{1}	R_{2}	Configuration of C	MIC ($\mu \mathrm{g} / \mathrm{ml}$)								$\underset{(\mathrm{mg} / \mathrm{mouse})}{\mathrm{ED}_{50} \mathrm{~b}}$
				S. aureus		E. coli NIHJ	K. pneumoniae 3K25	P. mirabilis	S. marcescens FU-104	P. aeruginosa		
				209P	JU-5 ${ }^{\text {a }}$					J-272	J-169	
1a	CH_{3}	H	R	0.2	3.12	≤ 0.2	0.1	0.78	3.12	0.2	0.4	2.30
1b	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$	H	R	0.78	3.12	0.4	0.4	1.56	12.5	0.4	0.78	0.61
1c	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	R	0.4	3.12	0.78	0.4	1.56	12.5	0.2	0.78	2.91
1d	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	H	R	0.78	3.12	0.4	0.2	0.2	6.25	0.78	3.12	1.14
1 e	$n-\mathrm{C}_{4} \mathrm{H}_{8}$	H	R	0.78	3.12	0.2	0.2	0.4	3.12	0.78	6.25	>3.0
1 f	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	H	R	0.78	3.12	0.4	0.2	0.1	3.12	1.56	12.5	>3.0
1 g	$n-\mathrm{C}_{8} \mathrm{H}_{17}$	H	R	0.78	3.12	0.4	0.4	0.4	3.12	3.12	100	>3.0
1h	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	H	R	3.12	3.12	12.5	6.25	1.56	50	1.56	12.5	n.t.
1 i	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OH}$	H	R	1.56	3.12	0.4	0.4	0.78	3.12	0.4	0.4	>3.0
1j	$\begin{aligned} & \left(\mathrm{CH}_{2}\right)_{5} \mathrm{O}- \\ & \left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH} \end{aligned}$	H	R	0.4	3.12	0.4	0.78	1.56	3.12	0.2	0.78	1.48
1k	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{3}$	H	R	0.78	6.25	0.4	0.4	0.2	6.25	0.78	3.12	1.52
11	$\mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	H	R	0.4	1.56	0.78	0.4	0.4	50	0.2	0.4	2.20
1m	$\mathrm{CH}_{2} \mathrm{CN}$	H	R	0.78	3.12	3.12	3.12	12.5	>200	0.4	0.4	2.00
1n	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}$	H	R	0.78	3.12	0.4	0.2	0.78	3.12	0.1	0.78	>3.0
10	$\mathrm{CH}_{2}-{ }_{0}$	H	R	0.78	3.12	0.4	0.2	0.78	3.12	0.1	0.78	>3.0
1p	$\mathrm{CH}_{2}-\square$	H	R	0.4	3.12	0.4	0.2	1.56	3.12	0.4	3.12	2.70
1q	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAc}$	H	R	1.56	6.25	0.78	0.78	0.78	12.5	0.4	3.12	1.71
1 r	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$	OH	R	0.78	6.25	0.78	0.4	1.56	50	0.2	0.78	1.18
1s	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$	H	S	1.56	6.25	3.12	100	25	n.t.	100	100	n.t.
PIPC				0.2	3.12	0.2	1.56	0.78	6.25	12.5	12.5	10.0
APPC				0.4	3.12	0.2	1.56	0.78	25	6.25	6.25	n.t.

[^0]Table 2. Protective effect of $\mathbf{1 b}$ against systemic infection in mice.

Strains	$\begin{gathered} \text { Challenge } \\ \text { dose } \\ \text { (cells/mouse) } \end{gathered}$	ED_{50} (mg/mouse)			MIC ($\mu \mathrm{g} / \mathrm{ml}$)		
		1b	PIPC	APPC	1b	PIPC	APPC
E. coli 41	$\begin{gathered} 2 \times 10^{5} \\ \left(1,000 \mathrm{LD}_{50}\right) \end{gathered}$	0.062	0.096	0.70	1.56	0.78	3.12
K. pneumoniae 3K25	$\begin{aligned} & 1.1 \times 10^{4} \\ & \left(5,000 \mathrm{LD}_{50}\right) \end{aligned}$	0.12	0.30	0.061	0.4	1.56	1.56
P. aeruginosa							
NC-5	$\begin{gathered} 1 \times 10^{4} \\ \left(500 \mathrm{LD}_{50}\right) \end{gathered}$	0.46	3.35	3.35	0.05	6.25	3.12
J-166	$\begin{gathered} 1.2 \times 10^{5} \\ \left(100 \mathrm{LD}_{50}\right) \end{gathered}$	0.24	3.35	3.35	0.4	6.25	6.25
GNB-70	$\begin{array}{r} 3 \times 10^{2} \\ \left(100 \mathrm{LD}_{50}\right) \end{array}$	0.72	0.90	1.39	0.4	3.12	3.12

PIPC: Piperacillin, APPC: apalcillin.
IP challenge with 5% mucin, subcutaneous administration at 1 and 3 hours after challenge.
than the penicillins ($\mathbf{1 a}, \mathbf{1 c}$) with a methyl or ethyl group, although $\mathbf{1 d}$ was less active in vitro than $\mathbf{1 a}$ and 1c. Furthermore, the penicillin (1b) which has a terminal hydroxyl group in the n-propyl group of $\mathbf{1 d}$ showed the most potent in vivo activity among the all penicillins we synthesized. The penicillin (1q) with an acetoxy group, derived from $\mathbf{1 b}$, was three times less potent than $\mathbf{1 b}$ against P. aeruginosa J-272 infection, and the penicillin (1s), the L-diastereoisomer of $\mathbf{1 b}$, was not active in vitro.

Based on these results, the penicillin (1b), which showed the most potent protective effect on mice against experimental P. aeruginosa $\mathrm{J}-272$ infection, was evaluated in vivo in mice against other Gramnegative bacteria in comparison with piperacillin (PIPC) and apalcillin (APPC). The results are shown in Table 2.

The penicillin (1b) was remarkably more active than PIPC and APPC against P. aeruginosa NC-5 and J-166; its activity was 2.5 times that of PIPC against K. pneumoniae 3K25. Against P. aeruginosa GNB-70 and E. coli 41, it was as active as PIPC.

Recently, the significance of iron in infection has aroused interest, ${ }^{3)}$ and it has been reported that the iron-binding proteins transferrin and lactferrin, in combination with antibodies, often show powerful bacteriostatic effects in vitro and are essential for protection against many infections. ${ }^{4 \sim 9)}$

The new ureido penicillin ($\mathbf{1 b}, \mathrm{AO}-1100$) contains a catechol moiety which is capable of binding to iron. We expect that this penicillin (1b, AO-1100) applied in vivo may behave like those iron-binding proteins to show bacteriostatic activity. Further studies are in progress to evaluate this penicillin.

Experimental

All melting points are uncorrected. IR spectra were recorded on a Hitachi EPI-G3 spectrometer. The NMR spectra were measured on a Hitachi R-20A spectrometer using TMS as internal standard. All chemical shifts are reported in δ ppm.

Determination of In Vitro Antibacterial Activity

All the in vitro antibacterial activities are given as MIC in $\mu \mathrm{g} / \mathrm{ml}$ required to prevent growth of the bacterial culture. MIC's were determined by the agar dilution method using heart infusion agar (Difco) or Antibiotic Medium No. 3 agar after incubation at $37^{\circ} \mathrm{C}$ for 20 hours, with an inoculum size of about $10^{8} \mathrm{cfu} / \mathrm{ml}$. The latter medium was used to culture Serratia marcescens FU-104.

Therapeutic Activity in Experimental Infections in Mice
Male $d d Y /$ slc mice, $5 \sim 6$ week-old, were used. Bacteria, cultured on heart infusion agar plates

Table 3.

Compound No.	Yield (\%)	$\mathrm{MP}\left({ }^{\circ} \mathrm{C}\right)$	Formula	Analysis (\%)*		
				C	H	N
3 c	67.2	147	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3}$	59.66	6.12	7.73
				(59.42	6.12	7.88)
3d	68.5	157	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$	61.52	6.72	7.18
				(61.33	6.69	7.27)
3 e	66.3	174~175	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$	63.14	7.23	6.69
				(63.39	7.23	6.83)
3 f	69.1	140	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$	65.80	8.07	5.90
				(66.01	8.04	5.95)
3 g	70.2	122~123	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$	67.90	8.74	5.28
				(68.16	8.84	5.59)
3h	35.1	154~155	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{4}$	54.82	5.62	7.10
				(54.74	5.61	7.00)
3 i	45.2	113~114	$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$	60.24	7.16	5.85
				(60.27	7.19	6.07)
3k	42.0	$142 \sim 143$	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$	56.86	6.20	6.63
				(56.84	6.17	6.64)
31	58.3	$161 \sim 163$	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5}$	55.23	5.48	5.86
				(55.13	5.43	6.10)
3 m	45.0	193 ~ 194	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$	56.25	4.20	14.58
				(55.95	4.16	14.49)
3 n	60.4	155~157	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$	58.25	4.89	13.58
				(57.95	4.99	13.40)
30	68.2	193~194	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{4}$	61.80	4.75	6.01
				(61.35	4.66	$6.10)$
3p	70.1	194~195	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$	69.12	5.39	5.76
				(68.82	5.35	5.83)

* Calcd. Found in parentheses.
overnight, were suspended in 5% gastric mucin and injected intraperitoneally into mice. The compounds were serially diluted 3-fold with saline and 0.2 ml of each dilution was administered subcutaneously to mice at 1 and 3 hours after the infection. Each experimental group consisted of 5 mice.

The dose in $\mathrm{mg} /$ mouse required to protect 50% of the mice from death (ED_{50}) for 7 days was calculated by the Behrens-Karber method. ${ }^{10)}$

N-(3-Hydroxypropyl)-3,4-dihydroxybenzamide (3b)

To a stirred suspension of 3,4-diacetoxybenzoic acid (30.0 g) and ethyl chloroformate (15.0 g) in EtOAc $(300 \mathrm{ml})$ was added triethylamine $(14.0 \mathrm{~g})$ at $-15 \sim-10^{\circ} \mathrm{C}$. After stirring at the same temperature for 30 minutes, 3-aminopropanol (12.2 g) in EtOAc (60 ml) was dropwise added to the reaction mixture below $-10^{\circ} \mathrm{C}$. The mixture was stirred at $-15 \sim-10^{\circ} \mathrm{C}$ for 1 hour and the organic layer was acidified by adding AcOH . After $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ was added to the mixture, the organic layer was separated, washed successively with saturated NaHCO_{3} solution and brine, dried over MgSO_{4} and evaporated in vacuo. The residue was dissolved in $\mathrm{MeOH}(200 \mathrm{ml})$ and triethylamine $(1.0 \mathrm{ml})$ was added to the solution at room temperature. After stirring at the same temperature for 40 minutes, the reaction solution was concentrated in vacuo and the residue was treated with EtOAc. The resulting crystals were collected by filtration to give $3 \mathrm{~b}(11.7 \mathrm{~g})$ as colorless granules: $\mathrm{mp} 176 \sim 178^{\circ} \mathrm{C}$.

Anal Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$: C 56.87, H 6.20, N 6.63 .
Found: \quad C 56.64, H 6.12, N 6.43.
Other N-substituted alkyl-3,4-dihydroxybenzamides ($3 \mathrm{c} \sim \mathrm{p}$) were similarly obtained from 3,4diacetoxybenzoic acid and the corresponding amines by the mixed anhydride method following deacetylation. Yield, melting points and analytical data of these compounds except $\mathbf{3 j}$ are given in Table 3. $\mathbf{3 j}$ was obtained as colorless glass: IR (KBr) $3700 \sim 2200,1620,1590,1540,1500,1110,1060$
cm^{-1}; NMR (DMSO- $\left.d_{6}\right) 3.48(8 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.6 \sim 7.5(3 \mathrm{H}, \mathrm{m})$.
N-(3-Acetoxypropyl)-3,4-diacetoxybenzamide (6)
Compound 3b (20.0 g) was suspended in acetic anhydride (150 ml) and a catalytic amount of pyridine was added to the stirred suspension. After stirring at $40 \sim 50^{\circ} \mathrm{C}$ for 1 hour, the reaction mixture was poured into ice-water and extracted with EtOAc. The organic layer was separated, dried over MgSO_{4} and evaporated in vacuo. The residue was chromatographed on a silica gel column with CHCl_{3} to give $6(25.5 \mathrm{~g})$ as colorless crystals: $\mathrm{mp} 63 \sim 64^{\circ} \mathrm{C}$.

Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{7}:$ C 56.97, H 5.68, N 4.15. Found: \quad C 56.98, H 5.66, N 4.18.

N-(3-Acetoxypropyl)-3,4-dihydroxybenzamide (3q)

To a solution of $6(3.0 \mathrm{~g})$ in $\mathrm{MeOH}(50 \mathrm{ml})$ was added $28 \% \mathrm{NH}_{4} \mathrm{OH}(2.2 \mathrm{ml})$ at $-20 \sim-15^{\circ} \mathrm{C}$. After stirring at the same temperature, AcOH was added to the reaction mixture until the organic layer was acidified. The mixture was poured into ice-water and $3 q(1.7 \mathrm{~g})$ was obtained. The crude product was recrystallized from $\mathrm{MeOH}-\mathrm{EtOAc}: \mathrm{mp} 160^{\circ} \mathrm{C}$.

$$
\begin{array}{cl}
\text { Anal Calcd for } \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}: & \text { C } 56.91, \mathrm{H} 5.97, \mathrm{~N} 5.53 . \\
\text { Found: } & \text { C } 56.90, \mathrm{H} 6.02, \mathrm{~N} 5.49 .
\end{array}
$$

6-[(R)-2-[3-(3,4-Dihydroxybenzoyl)-3-(3-hydroxypropyl)-1-ureido]-2-phenylacetamido]penicillanic Acid (1b)

The Preparation of $\mathbf{1 b}$ by Using Trimethylsilyl Chloride as Silylating Agent (Method A): To a stirred suspension of $\mathbf{3 b}(21.1 \mathrm{~g})$ and trimethylsilyl chloride (52.2 g) in EtOAc (600 ml) was added triethylamine $(48.6 \mathrm{~g})$. After stirring at $40 \sim 45^{\circ} \mathrm{C}$ for 1 hour, trichloromethyl chloroformate $(10.9 \mathrm{~g})$ in EtOAc (30 ml) was added to the reaction mixture at $0 \sim 2^{\circ} \mathrm{C}$. Stirring was continued while allowing the temperature to rise to room temperature over 2 hours and furthermore for 1 hour at $25 \sim 30^{\circ} \mathrm{C}$. Silylated ABPC which was prepared from ABPC (42.0 g), trimethylsilyl chloride (28.7 g) and triethylamine $(26.8 \mathrm{~g})$ in EtOAc $(600 \mathrm{ml})$ was added to the mixture at $0 \sim 5^{\circ} \mathrm{C}$. After stirring at the same temperature for 1.5 hours, the reaction mixture was poured into ice-water. The organic layer was separated after the addition of THF (300 ml) and extracted with cold saturated NaHCO_{3} solution $(500 \mathrm{ml})$. The aqueous layer was adjusted to pH 2.5 with 2 N HCl and re-extracted with EtOAc. The extract was washed with brine, separated, dried over MgSO_{4} and evaporated in vacuo. The residue was treated by n-hexane to give $\mathbf{1 b}(35.0 \mathrm{~g})$ as pale yellow powder.

The Preparation of $\mathbf{1 b}$ by Using Dichlorodimethylsilane as Silylating Agent (Method B): A suspension of $3 \mathrm{~b}(21.1 \mathrm{~g}$), dichlorodimethylsilane (32.3 g) and triethylamine (50.5 g) in THF (600 ml) was stirred under reflux for 1 hour and trichloromethyl chloroformate (10.9 g) in THF (30 ml) was added to the mixture at $5 \sim 10^{\circ} \mathrm{C}$. After stirring at room temperature for 4 hours, silylated ABPC $(40.2 \mathrm{~g})$ in THF was added to the reaction mixture at $0 \sim 5^{\circ} \mathrm{C}$ and stirring was continued for 1 hour. The same work-up as that described for Method A was carried out to give $\mathbf{1 b}(52.3 \mathrm{~g})$ as pale yellow powder.

Purification of 1b: Crude 1b (35.0 g) was dissolved in $5 \% \mathrm{NaHCO}_{3}$ solution (120 ml) and chromatographed over Diaion HP- 20 with elution by $\mathrm{H}_{2} \mathrm{O}$ and then 25% aqueous acetone. The fractions containing the product were combined and adjusted to pH 2.5 with 2 N HCl after the addition of EtOAc. The organic layer was separated, dried over MgSO_{4} and concentrated in vacuo. The residue was triturated with n-hexane to give $\mathbf{1 b}(21.0 \mathrm{~g})$ as colorless powder.

Compounds $(\mathbf{1} \mathbf{c} \sim \mathbf{g}, \mathbf{i} \sim \mathbf{s})$ were prepared according to Method A. In the case of preparing $\mathbf{1 r}$ and 1s, AMPC and 6-[(S)-2-amino-2-phenylacetamido]penicillanic acid, respectively, were utilized in place of ABPC.

NMR and IR spectral data of these compounds are given in Table 4.
6-[(R)-2-[3-(3,4-Dihydroxybenzoyl)-3-(3-hydroxyethyl)-1-ureido]-2-phenylacetamido]penicillanic Acid (1h)

Compound $\mathbf{1} \mathrm{h}$ was prepared from $\mathbf{3 h}(4.0 \mathrm{~g})$ by Method A. However, as $\mathbf{1 h}$ was very unstable under basic conditions, the purification was carried out by chromatography on Sephadex LH-20 eluted

Table 4. IR and NMR spectral data of $\mathbf{1}$.

Compound No.	$\mathrm{IR} \mathrm{max}_{\operatorname{mar}}^{\mathrm{KBr}} \mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$	NMR δ value (DMSO- d_{6})
1b	1775, 1700~1640	$\begin{aligned} & 1.4 \sim 2.0(2 \mathrm{H}, \mathrm{~m}), 1.41(3 \mathrm{H}, \mathrm{~s}), 1.55(3 \mathrm{H}, \mathrm{~s}), 3.2 \sim 4.0(4 \mathrm{H}, \mathrm{~m}) \text {, } \\ & 4.20(1 \mathrm{H}, \mathrm{~s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{~m}), 6.7 \sim 7.5(8 \mathrm{H}, \mathrm{~m}), 9.2(2 \mathrm{H}, \mathrm{~m}) \end{aligned}$
1c	$1775,1700 \sim 1630$	$0.8 \sim 1.3(3 \mathrm{H}, \mathrm{m}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 3.4 \sim 4.0(2 \mathrm{H}, \mathrm{m})$, $4.21(1 \mathrm{H}, \mathrm{s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{m}), 6.7 \sim 7.5(8 \mathrm{H}, \mathrm{m}), 9.13(1 \mathrm{H}, \mathrm{d}$, $J=7 \mathrm{~Hz}), 9.30(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$
1d	1770, 1700~1640	$\begin{aligned} & 0.6 \sim 1.9(5 \mathrm{H}, \mathrm{~m}), 1.43(3 \mathrm{H}, \mathrm{~s}), 1.56(3 \mathrm{H}, \mathrm{~s}), 3.4 \sim 3.9(2 \mathrm{H}, \mathrm{~m}), \\ & 4.20(1 \mathrm{H}, \mathrm{~s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{~m}), 6.7 \sim 7.6(8 \mathrm{H}, \mathrm{~m}), 9.11(1 \mathrm{H}, \mathrm{~d} \\ & J=7 \mathrm{~Hz}), 9.21(1 \mathrm{H}, \mathrm{~d}, J=7 \mathrm{~Hz}) \end{aligned}$
1e	1770, 1710~1630	$0.7 \sim 1.7(7 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 3.5 \sim 3.9(2 \mathrm{H}, \mathrm{m})$, $4.20(1 \mathrm{H}, \mathrm{s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{m}), 6.7 \sim 7.5(8 \mathrm{H}, \mathrm{m}), 9.11(1 \mathrm{H}, \mathrm{d}$, $J=7 \mathrm{~Hz}), 9.21(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$
1f	1770, 1710~1640	$\begin{aligned} & 0.7 \sim 1.8(11 \mathrm{H}, \mathrm{~m}), 1.43(3 \mathrm{H}, \mathrm{~s}), 1.57(3 \mathrm{H}, \mathrm{~s}), 3.5 \sim 3.9(2 \mathrm{H}, \mathrm{~m}) \\ & 4.21(1 \mathrm{H}, \mathrm{~s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{~m}), 6.7 \sim 7.5(8 \mathrm{H}, \mathrm{~m}), 9.16(1 \mathrm{H}, \mathrm{~d} \\ & J=7 \mathrm{~Hz}), 9.27(1 \mathrm{H}, \mathrm{~d}, J=7 \mathrm{~Hz}) \end{aligned}$
1g	1770, 1700~1640	$\begin{aligned} & 0.7 \sim 1.8(15 \mathrm{H}, \mathrm{~m}), 1.41(3 \mathrm{H}, \mathrm{~s}), 1.55(3 \mathrm{H}, \mathrm{~s}), 3.4 \sim 3.9(2 \mathrm{H}, \mathrm{~m}) \\ & 4.20(1 \mathrm{H}, \mathrm{~s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{~m}), 6.7 \sim 7.5(8 \mathrm{H}, \mathrm{~m}), 9.14(1 \mathrm{H}, \mathrm{~d} \\ & J=7 \mathrm{~Hz}), 9.27(1 \mathrm{H}, \mathrm{~d}, J=7 \mathrm{~Hz}) \end{aligned}$
1h	1770, 1700~1640	$1.41(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 3.2 \sim 4.0(4 \mathrm{H}, \mathrm{m}), 4.21(1 \mathrm{H}, \mathrm{s}), 5.3 \sim$ $5.8(3 \mathrm{H}, \mathrm{m}), 6.7 \sim 7.7(8 \mathrm{H}, \mathrm{m}), 9.23(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 9.31(1 \mathrm{H}$, d, $J=7 \mathrm{~Hz}$)
1 i	1770, 1700~1630	$1.3(6 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 3.1 \sim 3.9(4 \mathrm{H}, \mathrm{m}), 4.21$ $(1 \mathrm{H}, \mathrm{s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{m}), 6.7 \sim 7.5(8 \mathrm{H}, \mathrm{m}), 9.14(1 \mathrm{H}, \mathrm{d}, J=$ $7 \mathrm{~Hz}), 9.24(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$
1 j	1775, 1700~1640	$1.41(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 3.3 \sim 4.1(8 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}, \mathrm{s}), 5.3 \sim$ $5.8(3 \mathrm{H}, \mathrm{m}), 6.7 \sim 7.6(8 \mathrm{H}, \mathrm{m}), 9.08(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 9.20$ $(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$
1k	1775, 1700~1650	$1.41(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 3.18(3 \mathrm{H}, \mathrm{s}), 3.40(2 \mathrm{H}, \mathrm{m}), 3.85(2 \mathrm{H}$, $\mathrm{m}), 4.20(1 \mathrm{H}, \mathrm{s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{m}), 6.7 \sim 7.6(8 \mathrm{H}, \mathrm{m}), 9.11$ $(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 9.18(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$
11	$\begin{aligned} & 1770,1730 \\ & 1700 \sim 1650 \end{aligned}$	$\begin{aligned} & 0.8 \sim 1.4(3 \mathrm{H}, \mathrm{~m}), 1.41(3 \mathrm{H}, \mathrm{~s}), 1.55(3 \mathrm{H}, \mathrm{~s}), 3.8 \sim 4.7(4 \mathrm{H}, \mathrm{~m}) \text {, } \\ & 4.20(1 \mathrm{H}, \mathrm{~s}), 5.3 \sim 5.9(3 \mathrm{H}, \mathrm{~m}), 6.6 \sim 7.7(8 \mathrm{H}, \mathrm{~m}), 8.7 \sim 9.8 \\ & (2 \mathrm{H}, \mathrm{~m}) \end{aligned}$
1m	1770, 1700~1660	$1.41(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 4.20(1 \mathrm{H}, \mathrm{s}), 4.6(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.3 \sim 5.8$ $(3 \mathrm{H}, \mathrm{m}), 6.8 \sim 7.6(8 \mathrm{H}, \mathrm{m}), 9.21(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$
1 n	1770, 1700~1650	$1.41(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 2.78(2 \mathrm{H}, \mathrm{m}), 3.98(2 \mathrm{H}, \mathrm{m}), 4.20$ $(1 \mathrm{H}, \mathrm{s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{m}), 6.7 \sim 7.5(8 \mathrm{H}, \mathrm{m}), 9.09(1 \mathrm{H}, \mathrm{d}, J=$ $7 \mathrm{~Hz}), 9.14(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$
10	1770, 1700~1650	$1.41(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 4.20(1 \mathrm{H}, \mathrm{s}), 4.8 \sim 5.1(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.3 \sim 5.8(3 \mathrm{H}, \mathrm{m}), 6.1 \sim 7.6(11 \mathrm{H}, \mathrm{m}), 9.18(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$
1p	1770, 1700~1640	$1.42(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 4.21(1 \mathrm{H}, \mathrm{s}), 4.8 \sim 5.1(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.3 \sim 5.8(3 \mathrm{H}, \mathrm{m}), 6.7 \sim 7.6(13 \mathrm{H}, \mathrm{m}), 9.16(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$, $9.24(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$
1q	$\begin{aligned} & 1775,1730 \\ & 1700 \sim 1640 \end{aligned}$	$1.41(3 \mathrm{H}, \mathrm{s}), 1.5 \sim 2.1(2 \mathrm{H}, \mathrm{m}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.88(3 \mathrm{H}, \mathrm{s}), 3.6 \sim$ $4.1(4 \mathrm{H}, \mathrm{m}), 4.21(1 \mathrm{H}, \mathrm{s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{m}), 6.8 \sim 7.6(8 \mathrm{H}, \mathrm{m})$, $9.17(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 9.30(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$
1 r	1770, 1700~1640	$\begin{aligned} & 1.3 \sim 1.9(2 \mathrm{H}, \mathrm{~m}), 1.42(3 \mathrm{H}, \mathrm{~s}), 1.56(3 \mathrm{H}, \mathrm{~s}), 3.1 \sim 4.0(4 \mathrm{H}, \mathrm{~m}), \\ & 4.20(1 \mathrm{H}, \mathrm{~s}), 5.3 \sim 5.7(3 \mathrm{H}, \mathrm{~m}), 6.5 \sim 7.3(7 \mathrm{H}, \mathrm{~m}), 9.0(2 \mathrm{H}, \mathrm{~m}) \end{aligned}$
1s	1775, 1700~1640	$\begin{aligned} & 1.3 \sim 1.9(2 \mathrm{H}, \mathrm{~m}), 1.49(3 \mathrm{H}, \mathrm{~s}), 1.61(3 \mathrm{H}, \mathrm{~s}), 3.2 \sim 4.0(4 \mathrm{H}, \mathrm{~m}), \\ & 4.21(1 \mathrm{H}, \mathrm{~s}), 5.3 \sim 5.7(3 \mathrm{H}, \mathrm{~m}), 6.7 \sim 7.5(8 \mathrm{H}, \mathrm{~m}), 9.09(1 \mathrm{H}, \mathrm{~d}, \\ & J=7 \mathrm{~Hz}), 9.19(1 \mathrm{H}, \mathrm{~d}, J=7 \mathrm{~Hz}) \end{aligned}$

The presence of catechol moiety in these compounds followed from the dark green color in the FeCl_{3} test.
with acetone to give $1 \mathrm{~h}(1.2 \mathrm{~g})$ and $7(1.5 \mathrm{~g})$ as colorless powder.
6-[(R)-2-[3-(2-(3,4-Dihydroxybenzoyloxy)ethyl)-1-ureido]-2-phenylacetamido]penicillanic Acid (7)
Compound $1 \mathrm{~h}(2.0 \mathrm{~g})$ was dissolved in saturated NaHCO_{3} solution $(50 \mathrm{ml})$. After stirring at room temperature for 10 minutes, the aqueous solution was acidified by adding AcOH at $0 \sim 5^{\circ} \mathrm{C}$ and extracted with a mixture of EtOAc $(50 \mathrm{ml})$ and THF $(50 \mathrm{ml})$. The organic layer was separated, washed with brine, dried over MgSO_{4} and evaporated in vacuo. The residue was chromatographed over Diaion HP-20 with elution by $\mathrm{H}_{2} \mathrm{O}$ and then 25% aqueous acetone to give $7(0.7 \mathrm{~g})$ as colorless powder.

IR (KBr) 1775, 1695, 1650, 1550, $1530 \mathrm{~cm}^{-1}$; NMR (DMSO- d_{6}) $1.45(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 3.2 \sim$ $3.7(2 \mathrm{H}, \mathrm{m}), 4.0 \sim 4.5(2 \mathrm{H}, \mathrm{m}), 4.27(1 \mathrm{H}, \mathrm{s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{m}), 6.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.8 \sim 7.7(9 \mathrm{H}, \mathrm{m}), 9.20$ ($1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$).

6-[(R)-2-[[2-(3,4-Dihydroxybenzamido) ethyloxycarbonyl]amino]-2-phenylacetamido]penicillanic Acid (8)

To a stirred suspension of $1 \mathrm{~h}(30.0 \mathrm{~g})$ and triethylamine (5.1 g) in EtOAc (100 ml), trichloromethyl chloroformate (2.7 ml) was added dropwise below $-5^{\circ} \mathrm{C}$. Stirring was continued for 3 hours and then for 1 hour at $25 \sim 30^{\circ} \mathrm{C}$ under reduced pressure to remove excess phosgene. To the residue was added silylated $\operatorname{ABPC}(6.9 \mathrm{~g})$ in $\operatorname{EtOAc}(100 \mathrm{ml})$ at $0 \sim 5^{\circ} \mathrm{C}$ and the mixture was stirred for 1 hour at the same temperature. The same work-up as that described for $\mathbf{1 b}$ was carried out to give $8(1.5 \mathrm{~g})$ as colorless powder: IR (KBr) $1770,1715,1670,1505 \mathrm{~cm}^{-1}$; NMR ($\mathrm{DMSO}-d_{8}$) $1.42(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s})$, $3.3 \sim 3.8(2 H, m), 3.9 \sim 4.4(2 H, m), 4.22(1 \mathrm{H}, \mathrm{s}), 5.3 \sim 5.8(3 \mathrm{H}, \mathrm{m}), 7.1 \sim 8.0(8 \mathrm{H}, \mathrm{m}), 8.3(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $9.05(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$.

Acknowledgments

The authors dedicate respectfully this paper to Dr. T. Noto, who died in 1984. We are grateful to Dr. T. Matsuno and Dr. T. Mori for their encouragement and comments.

References

1) Ohi, N.; B. Aoki, T. Shinozaki, K. Moro, T. Noto, T. Nehashi, H. Okazaki \& I. Matsunaga: Semisynthetic β-lactam antibiotics. I. Synthesis and antibacterial activity of new ureidopenicillin derivatives having catechol moieties. J. Antibiotics 39: 230~241, 1986
2) Arthur, P. P. \& B. Richard: Rearrangements between primary ethanolamides of carboxylic acids and the corresponding aminoethylester. J. Am. Chem. Soc. 69: 200~204, 1947
3) Bullen, J. J.: The significance of iron infection. Rev. Infect. Dis. 3: 1127~1138, 1981
4) Bullen, J. J.; A. B. Wilson, G. H. Cushnie \& H. J. Rogers: The abolition of the protective effect of Pasteurella septica antiserum by iron compounds. Immunology 14: 889~898, 1968
5) Bullen, J. J. \& H. J. Rogers: Bacterial iron metabolism and immunity to Pasteurella septica and Escherichia coli. Nature 224: 380~382, 1969
6) Donaldson, D. M.; R. R. Roberts, H. S. Larsen \& J. G. Tew: Interrelationship between serum betalysin, lysozyme, and the antibody-complement system in killing Escherichia coli. Infect. Immun. 10: 657~666, 1974
7) Fletcher, J.: The effect of iron and transferrin on the killing of Escherichia coli in fresh serum. Immunology 20: 493~500, 1971
8) Norrod, P. \& R. P. Williams: Effects of iron and culture filtrates on killing of Neisseria gonorrhoeae by normal human serum. Infect. Immun. 21: 918~924, 1978
9) Rogers, H. J. \& C. Synge: Bacteriostatic effect of human milk on Escherichia coli: The role of IgM. Immunology 34: 19~28, 1978
10) Karber, G.: Beitrag zur kollektiven Behandlung pharmakologischer Reihen-Versuche. Arch. Exp. Pharm. 162: 480~483, 1931

[^0]: ${ }^{\text {a }}$ Penicillinase producer. ${ }^{\text {b }}$ P. aeruginosa J-272 (challenge dose: $1 \times 10^{4} \mathrm{cfu} / \mathrm{ml}$). n.t.: Not tested.

